Для такого исследования создан специальный микроскоп. Изучаемая жемчужина помещается в отверстие, проделанное в металлической пластинке и имеющее диаметр меньший, чем диаметр жемчужины. Предусмотрены способы, позволяющие освещать эту жемчужину снизу или сверху. В результате можно изучать поверхность жемчужины, а также ее внутреннее строение. Для исследования отверстия просверленных жемчужин используется дополнительное приспособление. Его верхняя часть представляет собой коническую деталь, вершина которой имеет форму небольшого блюдца с маленьким отверстием в центре. Исследуемая жемчужина помещается на «блюдце» таким образом, чтобы просверленный канал располагался вертикально; вся деталь может вращаться вокруг вертикальной оси, причем шкала имеет цену деления 5
. Под столиком, несущим коническую деталь, укреплен микрометреиный винт, позволяющий снимать отсчет перемещения шпинделя с точностью до 0,01 мм. Шпиндель, тонкий, как проволочка, проходит сквозь отверстие в жемчужине. Лучшие образцы шпинделя изготовляют из нержавеющей стали, причем верхний его конец представляет собой отшлифованное зеркало, наклоненное под углом 45° к оси. Шпиндель жестко соединен с мжкрометренным винтом и может перемещаться вверх и вниз в отверстии жемчужины при его вращении. Жемчужина освещается сбоку, и с помощью микроскопа таким образом можно исследовать цилиндрическую поверхность стенки отверстия. Шкала микрометрен-ного винта позволяет измерить толщину ядра или любого слоя жемчужины, а также выяснить положение любой замеченной горизонтальной отметки. С помощью шкалы, связанной с деталью, несущей жемчужину, можно установить ориентировку любого замеченного пятна.
Эндоскоп — инструмент, созданный специально для оптического исследования просверленных жемчужин. В отверстие жемчужины пропускается полая игла соответствующего диаметра. Линза — конденсатор направляет лучи света от сильного источника в небольшую трубку, в которой укрепляется жемчужина, нанизанная на иглу. Игла во время работы остается неподвижной, а жемчужина может передвигаться вдоль нее.
Рис. 136. Игла эндоскопа: вверху — в природной жемчужине, внизу — в искусственно выращенной жемчужине.
Лучи света, падающие на ближнее зеркало, укрепленное внутри иглы, отражаются от него и падают под прямым углом на стенку отверстия жемчужины (рис. 136). Поскольку природная жемчужина состоит из серии тонких концентрических слоев, свет, упавший на стенку отверстия, стремится следовать вдоль этих слоев и возвратиться снова к стенке отверстия, и, если второе, дальнее зеркало расположено таким образом, что центр сферических слоев жемчужины находится посредине между двумя зеркалами, свет отразится от второго зеркала и попадет в микроскоп и в глаз исследователя. На практике жемчужину двигают вдоль иглы и наблюдают, не появится ли вспышка света в микроскопе. Если же жемчужина выращена и имеет перламутровое ядро , то слои в последнем плоские и не искривлены, так что свет не
Рис. 137. Схема расположения кристаллов арагонита: слева — в природной жемчужине, справа — в искусственно выращенной жемчужине.
возвращается к стенке отверстия. В этом случае вместо вспышки света в микроскопе наблюдается тусклый серый свет, который не изменяется при движении жемчужины вдоль иглы. Этот метод прост и быстр; опытный исследователь может проверить до 200 жемчужин за час. Однако в настоящее время оптические